
Modification of operating a multi-mode repeater with SvxLink and MMDVM

Small cookbook to operate

with the

MMI Rev.B

M Ultimatum M ODE I nterfaceM Ultimatum M ODE I nterfaceM Ultimatum M ODE I nterfaceM Ultimatum M ODE I nterfaceM Ultimatum M ODE I nterfaceM Ultimatum M ODE I nterface

DK4HPA 1 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

Table of Contents

1. What is needed everything. 3

2. Block diagram of the control 3

3. The multi-mode interface 4

4. SvxLink downscale on the input in digital signal 10

5. Now a shell script is needed which checks the log file from the host MMDVM 10

6. Now even setting up the GPIO's for SvyLink missing with another shell script 11

7. The files created must be called at the start of Linux 11

8th. are added under crontab still has the following entry 8th. are added under crontab still has the following entry 12

9. File modify Logik.tcl of SvxLink 12

10. Modify the RepeaterLogik.tcl of SvxLink 14

11. Adjusting svxlink.conf file 16

DK4HPA 2 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

· What is needed everything.

Raspberry Pi 2 or 3

MMI board for the Raspi (Mutlimode interface) SvxLink

Software

Arduino DUE with MMDVM-Shield

software for the Arduino MMDVM

software for Raspi

Linux Editor mc (Midnight Commander), or nano

In addition, some files must be created in order to provide effective control.

In the SvxLink software two TCL scripts must be edited. Of course, the ini files need to be adjusted. Here

where the MMDVMHost log is stored must be ensured.

A little hint, the whole project can be understood only as a suggestion. Commercial use of the circuit or

publication is expressly prohibited without my consent.

· Block diagram of the control

DK4HPA 3 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

● The multi-mode interface

DK4HPA 4 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

parts list

MMI_REV_B

part part part Value Value Value Device Device Device package package package Library

C1 220n C2,5-3 C2.5-3 capacitor-wima

C2 100n C2,5-3 C2.5-3 capacitor-wima

C3 1ĩF CPOL EUE1.8-4 E1,8-4 rcl

C4 1ĩF CPOL EUE1.8-4 E1,8-4 rcl

GPIO Raspi FE20-2 FE20-2 con-lsta

IC1 4066N 4066N DIL14 40xx

J1 Audio MTA04-100 10X04MTA con-amp

J2 DV modem MTA04-100 10X04MTA con-amp

J3 TRX MTA06-100 10X06MTA con-amp

J4 USB MTA04-100 10X04MTA con-amp

LED1 red LED3MM LED3MM led

LED2 green LED3MM LED3MM led

Q1 BC547 BC547 TO92 transistor NPN

Q2 BC327 BC327 TO92 EBC transistor-pnp

Q3 BC327 BC327 TO92 EBC transistor-pnp

Q4 BC547 BC547 TO92 transistor NPN

R1 10k R-EU_0204 / 7 0204/7 rcl

R2 10k R-EU_0204 / 7 0204/7 rcl

R3 1k R-EU_0204 / 7 0204/7 rcl

R4 1k R-EU_0204 / 7 0204/7 rcl

R5 100k R-EU_0204 / 7 0204/7 rcl

R6 1k R-EU_0204 / 7 0204/7 rcl

R7 10k R-EU_0204 / 7 0204/7 rcl

R8 1k R-EU_0204 / 7 0204/7 rcl

R9 100k R-EU_0204 / 7 0204/7 rcl

R10 1k R-EU_0204 / 7 0204/7 rcl

R11 100k R-EU_0204 / 7 0204/7 rcl

R12 10k R-EU_0204 / 7 0204/7 rcl

R13 1k R-EU_0204 / 7 0204/7 rcl

X3 USB Sound PN87520 PN87520 con-berg

Easy USB sound card (eg 3D Sound)

DK4HPA 5 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

Modification of the Raspberry Pi for the USB sound card connector

Remove the shield cover from the back of the USB port

Soldering of the connection cable for the MMI board

DK4HPA 6 Multimode with SvxLink & MMDVM

GND

+ 5V

D-

D +

Modification of operating a multi-mode repeater with SvxLink and MMDVM

Instead of a sound chips for audio digitization, for the program SvxLink, here the USB port is provided for receiving

a USB sound card. The sound card is essential Affordable (about 2 to 3 euros) as a sound chip. It therefore

appears that for the components incl. USB sound card at a cost of about 15 euros.

The small plug-on board for the Raspberry Pi includes an audio switch 4066N, four transistors for the controller and

a connector for the USB sound card. The audio switch provides for the through-connection of the modulation

signals for the analog transmission (SvxLink) and the digital transmission (MMDVM).

The analog audio signals are

connected to the USB sound

card. Experience has shown that

the signals via solder should be

removed from the USB sound

card and not with the plugs. With

terminal strip J1 signals from the

sound card are firmly connected.

DK4HPA 7 Multimode with SvxLink & MMDVM

NF-TX →

← NF-RX

PTT →

← SQL

GND

GND

← NF-TX

NF-RX →

← → PTT

SQL

Headphones

sound card

Microphone

Sound card

GND

+ 5V +

D

D-

GND

F

UNK

GE

ADVISES

MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

To the terminal block J4, the USB signals are connected directly by a modified USB receptacle from Raspberry Pi.

This makes for a compact construction.

the signals NF-TX, NF-RX, PTT and SQL be connected to the MMDVM on the terminal board J2.

a connection to the radio technology for the signals NF-TX, NF RX, PTT and SQL is produced on the terminal

block J3. In addition, two terminals are provided for the GND connections of the radio technology and the

MMDVM.

Transistor Q1 controls the PTT of the radio. As a signal 0V is switched through here, which should be generally the

case with many devices. The Q2 provides a level conversion from MMDVM to the analog switch to be able to

control it. Q4 ensures a priority of analog side. If the MMDVM only network operation are transferred and the

analog beacon runs, the input PIN is blocked by 5 4066N. Thus, the hearing of the analog subscriber is not

strappaziert.

Q3 provides for control of the SQL signal for SvxLink software. If the SQL signal 0V amount, it must in which

the signal is inverted svxlink.conf (see adjusting svxlink.conf file page 16).

For the function a lot needs to be done to programming. On Linux, you can work at best with the program part of

MC. If scripts are created in Windows, so pay attention to the CR at the end of lines. It may happen that the scripts

do not work.

Whether one is now using nano or MC up to you. When the corresponding editor I have always worked with

root privileges (eg ~ sudo mc).

Must also be given to the

assignment of rights. This is

easiest to check with mc and

adapt. The paths are created,

depending on the installation or

used image. So the little path

selection is only an example.

DK4HPA 8th Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

Note:

Now the change and adjustment of the various scripts follows. All that is in bold, must be added or created. The

lines are to be inserted, the prefix text and the following is shown in italics.

DK4HPA 9 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

· downscale SvxLink in digital signal on the input

To this end, a Python script is required to run on the basis of the SQL signal via a GPIO9 Interupt.

Here is the script gpio.py This script is

located in / home / pi

import time

import RPi.GPIO as GPIO import os

Query whether DV mode via repeater def interrupt

(channel):

time.sleep (3.0)

os.system ("sudo / usr / share / SvxLink / events.d / local / svxlink_start_stop.sh")

RPi.GPIO layout use (such as PIN numbers) GPIO.setmode

(GPIO.BOARD) GPIO.setup (21, GPIO.IN)

RUN interrupt

GPIO.add_event_detect (21, GPIO.FALLING, callback = Interrupt)

Continuous loop

while True:

Waiting 100 ms

time.sleep (0.01)

● Now, a shell script is required which checks the log file from the host MMDVM

Paths that are marked with XXXXX must of course be adapted. An empty file abfrage.txt and log.txt must be Paths that are marked with XXXXX must of course be adapted. An empty file abfrage.txt and log.txt must be Paths that are marked with XXXXX must of course be adapted. An empty file abfrage.txt and log.txt must be Paths that are marked with XXXXX must of course be adapted. An empty file abfrage.txt and log.txt must be Paths that are marked with XXXXX must of course be adapted. An empty file abfrage.txt and log.txt must be

created in the specified path. The svxlink_start_stop.sh file I have posted in /usr/share/svxlink/events.d/local. Here

is the script svxlink_start_stop.sh

! / Bin / bash

Starts and stops SvxLink by evaluating the log files MMDVM

Setting a variable PIDMMH = $ (pidof

MMDVMHost) if [$ PIDMMH> "0"]; then

Logfile = $ (date + "/ XXXXX / MMDVM-% Y-% m-% d.log") PIDFILE = $

(pidof SvxLink) FILING TIME = "/ XXXXX / abfrage.txt" ALT = $ (tail -n

$ 1 TIME STORAGE) LOGDAT = "/ XXXXX / log.txt" DIFF = "180"

REQUEST = $ (($ (date +% s) - $ DIFF)) RF1 = "0"

RF2 = "0"

DK4HPA 10 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

Check whether DV mode is present on the input side

stop and SvxLink.

RF1 = $ (tail -n 10 $ LOGFILE | grep -c "DMRSlotRX") RF2 = $ (tail -n 10 $

LOGFILE | grep -c "RF") if [$ RF1 -ne "0" -o $ RF2 - ne "0"]; then

if ["$ (tail -n 1 $ LOGDAT)" = "$ (tail -n 1 $ LOGFILE)"!]; then

if [$ PIDFILE> "0"]; then sudo systemctl stop

svxlink.service fi

stat -c% Z $ LOGFILE> $ TERM STORAGE ALT =

$ (tail -n 1 $ TIME STORAGE) echo "STOP SvxLink"

fi

tail -n 1 $ LOGFILE> $ LOGDAT fi

(DIFF) SvxLink start when no RF DV mode after a time.

if [$ ALT -lt $ QUERY]; then

stat -c% Z $ LOGFILE> $ TERM STORAGE if [$

PIDFILE> "0"]; then

echo "SvxLink running" else sudo systemctl start echo "SvxLink running" else sudo systemctl start

svxlink.service

echo "START SvxLink" fi fi fi

● Now just set up the GPIO's for SvyLink missing with another shell script

The file is named gpio_start.sh and is located in / home / pi.

! / Bin / bash

Create GPIO for SvxLink echo "10"> / sys / class /

gpio / export

sudo chmod o + rw / sys / class / gpio / gpio10 / direction sudo chmod o + rw /

sys / class / gpio / gpio10 / active_low sudo chmod o + rw / sys / class / gpio /

gpio10 / value echo "in"> / sys / class / gpio / gpio10 / direction echo "1"> /

sys / class / gpio / gpio10 / active_low echo "17"> / sys / class / gpio / export

sudo chmod o + rw / sys / class / gpio / gpio17 / direction sudo chmod o +

rw / sys / class / gpio / gpio17 / value echo "out"> / sys / class / gpio / gpio17

/ direction

● The files created must be called at the start of Linux

In the file /etc/rc.local at the end the following message:

sudo /home/pi/gpio_start.sh sudo python

/home/pi/gpio.py

DK4HPA 11 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

● are added under crontab still has the following entry

Call with sudo crontab -e and following the end add:

* / 1 * * * * /usr/share/svxlink/events.d/local/svxlink_start_stop.sh> / dev / null 2> &

● modify file Logik.tcl of SvxLink

/usr/share/svxlink/events.d/Logik.tcl after /usr/share/svxlink/events.d/local copy If update of SvxLink the

files in the local path will not be overwritten and remain the adjustments. add the following lines and paste:

... From line ~ 123... From line ~ 123

#

Executed When a short identification Should be sent

hour - The hour on Which this identification Occur

minute - The hour on Which this identification Occur

#

proc send_short_ident {{-1} {minute hour -1}} {

global mycall; variable

CFG_TYPE;

TX_ON global;

Query whether DV mode available via the net? if {$ TX_ON

== "0"} {

set date [clockformat [clock seconds] Size, "-% Y-% m-% d.log"]; set time [clock seconds];

set a [file mtime "/ XXXXX / MMDVM $ date"]; set b 0;

set b [expr {$ time $ a}]; if {$ b <

"120"} {

puts "DV mode / No Bake"; return; }

spell word $ mycall;

if {$ CFG_TYPE # == "repeater"} {

playMsg "Core" "repeater"; }

... ... From line ~ 141

#

Executed When a long identification (eg hourly) Should be sent

hour - The hour on Which this identification Occur

minute - The hour on Which this identification Occur

#

proc send_long_ident {} {hour minute

global mycall;

global loaded_modules;

active_module global; variable

CFG_TYPE;

TX_ON global;

Query whether DV mode available via the net?

DK4HPA 12 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

if {$ TX_ON == "0"} {

set date [clockformat [clock seconds] Size, "-% Y-% m-% d.log"]; set time [clock seconds];

set a [file mtime "/ XXXXX / MMDVM $ date"]; set b 0;

set b [expr {$ time $ a}]; if {$ b <

"120"} {

puts "DV mode / No Bake"; return; }

spell word $ mycall;

if {$ CFG_TYPE == "repeater"} {

playMsg "Core" "repeater"; }

... ... From line ~ 335

#

Executed each time the squelch is opened or closed

RX_ID - The ID of the RX did the squelch opened / closed on

is_open - Set to 1 if the squelch is open or 0 if it's closed

#

proc squelch_open {} {RX_ID is_open

variable sql_rx_id;

#

- - - - - MMDVM modification -----

#

global sql_time_div;

dvdowntime global; variable

akttime;

set akttime [clock seconds];

puts "The squelch is $ is_open on RX $ RX_ID"; if {$ is_open} {

set sql_time_div $ akttime; } if {$ is_open == 0 && ([clock seconds] - $ sql_time_div> 30) {}set sql_time_div $ akttime; } if {$ is_open == 0 && ([clock seconds] - $ sql_time_div> 30) {}

set dvdowntime [expr [clock second] +120]; }

set sql_rx_id $ RX_ID; } From set sql_rx_id $ RX_ID; } From set sql_rx_id $ RX_ID; } From

line ~ 403

#

Executed once every whole minute. Do not put any code here Directly

Create a new function and add it to the timer tick subscriber list

by using the function addTimerTickSubscriber.

#

proc every_minute {} {

variable timer_tick_subscribers;

#

- - - - - - - MMDVM modification -------

#

dvmute global; dvdowntime

global; TX_ON global;

variable akttime;

DK4HPA 13 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

set akttime [clock seconds]; if {$ dvmute ==

1} {

if {$ TX_ON == 1} {

set dvdowntime [expr [clock second] +60]; } Else {

if {[clock second]> $ dvdowntime} {

set dvmute 0;

exec sudo systemctl start mmdvmhost.service &; }}}

puts [clockformat [clock seconds] -format "% Y-% m-% d% H:% M:% S"]; foreach subscriber $

timer_tick_subscribers {

$ Subscriber; }}

Done and save not forget

● modify the RepeaterLogik.tcl of SvxLink

Copy /usr/share/svxlink/events.d/RepeaterLogik.tcl after /usr/share/svxlink/events.d/local

add the following lines and paste:

... From row 28 ~... From row 28 ~

#

Executed When the software is started SvxLink

#

proc startup {} {

logic_name global;

#

- - - - - - - MMDVM modification --------

#

dvdowntime global; dvmute

global; TX_ON global; set

dvdowntime 0; set dvmute 0;

set TX_ON 0;

append func $ logic_name ":: checkPeriodicIdentify"; Logic ::

addTimerTickSubscriber $ func; Logic :: startup; }

... ... From line ~ 169

#

Executed each time the transmitter is turned on or off

#

proc transmit {} {IS_ON

#

MMDVM modification

#

set TX_ON $ IS_ON;

DK4HPA 14 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

Logic :: transmit $ IS_ON; }

... ... From line ~ 193

#

Executed When the repeater is activated

reason - The reason why the repeater which activated

SQL_CLOSE - Open on squelch, close flank

SQL_OPEN - Open on squelch, open flank

CTCSS_CLOSE - Open on CTCSS squelch close flank

CTCSS_OPEN - Open on CTCSS squelch open flank

TONE - Open on tone burst (always on squelch close)

DTMF - Open on DTMF digit (always on squelch close)

MODULE - Open on module activation

AUDIO - Open on incoming audio (module or logic linking)

SQL_RPT_REOPEN - Reopen on squelch after repeater down

#

proc repeater_up {reason} {

global mycall;

active_module global; variable

repeater_is_up;

#

- - - - - MMDVM modification ------

#

variable uptime; dvmute

global; downtime

globally;

set repeater_is_up 1;

set uptime [clock seconds]; set downtime

$ uptime; if {$ dvmute == 0} {

set dvmute 1;

set down time [expr $ uptime + 60];

exec sudo systemctl stop mmdvmhost.service &; puts "Stop MMDVM $

uptime $ downtime"; }

if {($ reason! = "SQL_OPEN") && ($ reason! = "CTCSS_OPEN") &&

($ Reason = "SQL_RPT_REOPEN"!)} {Set now [clock

seconds];

if {$ now- $ Logic :: prev_ident <$ Logic :: min_time_between_ident} {

return; } ...

...

Done and save not forget

DK4HPA 15 Multimode with SvxLink & MMDVM

Modification of operating a multi-mode repeater with SvxLink and MMDVM

● Adjusting svxlink.conf file

The file is located in the / etc / SvxLink and must be adapted for your own needs. To use the GPIO's, which

must be taken into account.

... ... From line ~ 175 [x1]... ... From line ~ 175 [x1]

TYPE = Local

AUDIO_DEV = alsa: plughw: 0 = 0

AUDIO_CHANNEL

SQL_DET = CTCSS

SQL_DET = SERIAL

SQL_DET = GPIO

...

...

CTCSS_BPF_HIGH = 270

Serial_port = / dev / ttyUSB0

SERIAL_PIN = CTS

GPIO_SQL_PIN = gpio10

SERIAL_SET_PINS = DTR! RTS

EVDEV_DEVNAME = / dev / input / by-id / usb SYNIC_SYNIC_Wireless_Audio-event-

... ...

If the SQL not exceed 0V 12V but 1 signal, the line is GPIO_SQL_PIN = gpio10 to invert as If the SQL not exceed 0V 12V but 1 signal, the line is GPIO_SQL_PIN = gpio10 to invert as

follows: GPIO_SQL_PIN =! Gpio10.follows: GPIO_SQL_PIN =! Gpio10.

... ... From line ~ 230... ... From line ~ 230

[Tx 1]

TYPE = Local

AUDIO_DEV = alsa: plughw: 0

AUDIO_CHANNEL = 1

PTT_TYPE = SerialPin

PTT_PORT = / dev / ttyUSB0

PTT_PIN = RTS

PTT_TYPE = GPIO

PTT_PIN = gpio17

SERIAL_SET_PINS = DTR! RTS

PTT_HANGTIME = 1000

TIMEOUT = 7200

The installation of the software on the Raspberry PI can be found by following the instructions of their authors.

Happy coding and crafting wishes Peter DK4HPA

E-mail: dk4hpa@darc.de

DK4HPA 16 Multimode with SvxLink & MMDVM

